PROBABILIDAD SIMPLE
La posibilidad que hay de que ocurra algún evento determinado, por ejemplo, que de un recipiente con 5 pelotas verdes, 2 azules y 3 rojas obtengamos una roja es de .3, siempre debe ser un número menor o igual a uno, excepto cuando lo expresas en porcentaje.
Probabilidad simple es igual a la cantidad de formas en que un resultado específico va a suceder entre la cantidad total de posibles resultados.
Una manera, muy usada en la práctica, de denominar la probabilidad un evento simple de un espacio muestral es como probabilidad simple o marginal, la cual hace referencia a la probabilidad de un evento simple, y se denota con P(A), siendo A el evento simple en cuestión. El nombre de probabilidad marginal se debe a que esta medida se puede obtener a partir de los totales marginales de una tabla de contingencia.
Ejemplo Probabilidad simple
| Cantidad de formas en que un resultado específico va a suceder |
Probabilidad = | |
| Cantidad total de posibles resultados |
Ejemplo: Hay 87 canicas en una bolsa y 68 son verdes. Si se escoge una, ¿cuál es la probabilidad de que esta sea verde?
Solución:
* Divide la cantidad de formas de elegir una canica verde (68) por la cantidad total de canicas (87)
* 68 ÷ 87 = 0.781609
* Redondea a la precisión deseada (es decir 0.781609 redondeado a centésimos es 0.78)
Árbol de Probabilidad o Diagrama de Árbol
Sea lanza una moneda cargada, a favor del lado del águila, si cae águila la moneda se saca una bola de una urna A en caso contrario de la urna B, la urna A tiene objetos de tipo s, la urna B objetos de tipo r, se sabe que por el contrario la urna B tiene objetos de tipo s y r, pero no la misma cantidad. Bosqueje mediante un diagrama de árbol la solución, a fin de encontrar la probabilidad
Probabilidad simple es igual a la cantidad de formas en que un resultado específico va a suceder entre la cantidad total de posibles resultados.
Una manera, muy usada en la práctica, de denominar la probabilidad un evento simple de un espacio muestral es como probabilidad simple o marginal, la cual hace referencia a la probabilidad de un evento simple, y se denota con P(A), siendo A el evento simple en cuestión. El nombre de probabilidad marginal se debe a que esta medida se puede obtener a partir de los totales marginales de una tabla de contingencia.
Ejemplo Probabilidad simple
| Cantidad de formas en que un resultado específico va a suceder |
Probabilidad = | |
| Cantidad total de posibles resultados |
Ejemplo: Hay 87 canicas en una bolsa y 68 son verdes. Si se escoge una, ¿cuál es la probabilidad de que esta sea verde?
Solución:
* Divide la cantidad de formas de elegir una canica verde (68) por la cantidad total de canicas (87)
* 68 ÷ 87 = 0.781609
* Redondea a la precisión deseada (es decir 0.781609 redondeado a centésimos es 0.78)
Árbol de Probabilidad o Diagrama de Árbol
Sea lanza una moneda cargada, a favor del lado del águila, si cae águila la moneda se saca una bola de una urna A en caso contrario de la urna B, la urna A tiene objetos de tipo s, la urna B objetos de tipo r, se sabe que por el contrario la urna B tiene objetos de tipo s y r, pero no la misma cantidad. Bosqueje mediante un diagrama de árbol la solución, a fin de encontrar la probabilidad
EJERCICIOS:
Hay 87 canicas en una bolsa y 68 son verdes. Si se escoge una, ¿cuál es la probabilidad de que esta sea verde?
Solución:
Divide la cantidad de formas de elegir una canica verde (68) por la cantidad total de canicas (87)
68 ÷ 87 = 0.781609
Redondea a la precisión deseada (es decir 0.781609 redondeado a centésimos es 0.78)
----------------------
Si yo tengo una canasta llena de peras y manzanas, de las cuales hay 20 peras y 10 manzanas. ¿Qué fruta es más probable que saque al azar de la canasta?
Para este ejemplo tenemos que 30 es el total de frutas en la canasta; es decir los casos posibles. Para calcular la probabilidad de sacar una manzana mis casos favorables son 10 puesto que existen sólo 10 manzanas. Así, aplicando la fórmula obtenemos que:
P(Manzana)=10/30=1/3= 33.3% probable
Calculando igual, la probabilidad de sacar pera es:
P(Pera)=20/30=2/3= 66.7% probable
Como 66.7 es mayor que 33.3 es más probable que saque una pera, pues hay más peras que manzanas en la canasta.
Ejemplo: Hay 87 canicas en una bolsa y 68 son verdes. Si se escoge una, ¿cuál es la probabilidad de que esta sea verde?Solución:
- Divide la cantidad de formas de elegir una canica verde (68) por la cantidad total de canicas (87)
- 68 ÷ 87 = 0.781609
- Redondea a la precisión deseada (es decir 0.781609 redondeado a centésimos es 0.78)
PROBABILIDAD CONJUNTA
EJERCICIOS:
EVENTOS MUTUAMENTE EXCLUYENTES Y NO EXCLUYENTES ENTRE SI
Dos o más eventos son mutuamente excluyentes o disjuntos, si no pueden ocurrir simultáneamente. Es decir, la ocurrencia de un evento impide automáticamente la ocurrencia del otro evento (o eventos).
Ejemplo:
Al lanzar una moneda solo puede ocurrir que salga cara o sello pero no los dos a la vez, esto quiere decir que estos eventos son excluyentes.
Dos o más eventos son no excluyentes, o conjuntos, cuando es posible que ocurran ambos. Esto no indica que necesariamente deban ocurrir estos eventos en forma simultánea.
Ejemplo:
Si consideramos en un juego de domino sacar al menos un blanco y un seis, estos eventos son no excluyentes porque puede ocurrir que salga el seis blanco.
La Regla de la Adición expresa que: la probabilidad de ocurrencia de al menos dos sucesos A y B es igual a:
P(A o B) = P(A) U P(B) = P(A) + P(B) si A y B son mutuamente excluyente
P(A o B) = P(A) + P(B) – P(A y B) si A y B son no excluyentes
Siendo: P(A) = probabilidad de ocurrencia del evento A
P(B) = probabilidad de ocurrencia del evento B
P(A y B) = probabilidad de ocurrencia simultanea de los eventos A y B
EJERCICIOS:
Supongase que en una caja cerrada se tienen 3 canicas rojas, 3 canicas azules y 4 canicas verdes. Se saca una sola canica ¿cual es la posibilidad de sacar una canica roja?
Canicas rojas: 3
Canicas azules: 3
Canicas verdes: 4
Total de canicas: 3 + 3 + 4 = 10
P (x) = 3 / ( 3 + 3 + 4) = 3/10 = 0,3 = 30%
Existe un 30% de posiblidad de sacar una canica roja
1 si se tira un dado calcular la probabilidad de:
A caen 3 puntos o menos o
B caen 5 puntos o mas
Como son Mutuamente excluyentes AnB=0
P(AoB)=P(a)+P(B)
=P(salen 3 o menos)+P(salen 5 o mas)
=3/6 + 2/6
=5/6
2 se tiene una urna con 50 papeles de colores 15 rojos, 5 morados, 9 verdes, 11 naranjas y 10 azules.
Cual es la probabilidad de:
A sale un papel azul o
B sale un papel rojo
P(AoB)=P(AuB)=P(A)+P(B)
=P(sale un azul)+P(sale 1 rojo)
=10/50 + 15/50
=25/50
=1/2
Eventos independientes
1 En la urna A tenemos 7 bolas blancas y 13 negros y en la urna B 12 blancas y 8 negras.
Cual es la probabilidad de que se extraiga una bola blanca de cada una
P(AyB)=P(A)*P(B)
=7/20 * 12/20
=84/400
=81/100
2 en una baraja de 52 cartas se toma una carta al azar luego se regresa y se toma otra.
Cual es la probabilidad de A la primera sea de diamantes, y B la segunda sea de tréboles.
P(AyB)=P(A) * P(B)
=13/52 * 13/52
=169/2704
Ejemplo: Al lanzar una moneda solo puede ocurrir que salga cara o sello pero no los dos a la vez, esto quiere decir que estos eventos son excluyentes.
Dos o más eventos son no excluyentes, o conjuntos, cuando es posible que ocurran ambos. Esto no indica que necesariamente deban ocurrir estos eventos en forma simultanea.
Ejemplo: Si consideramos en un juego de domino sacar al menos un blanco y un seis, estos eventos son no excluyentes porque puede ocurrir que salga el seis blanco
Ejemplo: lanzar al aire dos veces una moneda son eventos independientes por que el resultado del primer evento no afecta sobre las probabilidades efectivas de que ocurra cara o sello, en el segundo lanzamiento.
Eventos de un espacio muestral son excluyentes si su interseccion es el vacio y no son excluyentes si su interseccion es distinta del vacio, es decir, si tienen elementos en comun.
Por ejemplo, sea el experimento: se lanza un dado.
Definamos el evento E1 como E1=Sale el numero dos. Y el evento E2 como E2=Sale un numero par. Por lo tanto,
E1={ 2 } y E2={ 2, 4, 6 }
Como E1 interseccion E2 = { 2 } que es distinto del conjunto vacio, concluimos que E1 y E2 son eventos NO excluyentes.
Si definimos E3=Sale un numero impar, entonces
E2 interseccion E3 = el conjunto vacio, pues no hay ningun numero que pueda estar en E1 y en E3 (i.e. que pueda ser par e impar al mismo tiempo). Por lo tanto E2 y E3 son eventos excluyentes.
Y asi te construyes mas ejemplos de experimentos, y defines eventos en el espacio muestral tales que su interseccion sea no vacia.
Por ejemplo, sea el experimento: se lanza un dado.
Definamos el evento E1 como E1=Sale el numero dos. Y el evento E2 como E2=Sale un numero par. Por lo tanto,
E1={ 2 } y E2={ 2, 4, 6 }
Como E1 interseccion E2 = { 2 } que es distinto del conjunto vacio, concluimos que E1 y E2 son eventos NO excluyentes.
Si definimos E3=Sale un numero impar, entonces
E2 interseccion E3 = el conjunto vacio, pues no hay ningun numero que pueda estar en E1 y en E3 (i.e. que pueda ser par e impar al mismo tiempo). Por lo tanto E2 y E3 son eventos excluyentes.
Y asi te construyes mas ejemplos de experimentos, y defines eventos en el espacio muestral tales que su interseccion sea no vacia.
EVENTOS DEPENDIENTES E INDEPENDIENTES
Eventos Independientes
Dos o más eventos son independientes cuando la ocurrencia o no-ocurrencia de un evento no tiene efecto sobre la probabilidad de ocurrencia del otro evento (o eventos). Un caso típico de eventos independiente es el muestreo con reposición, es decir, una vez tomada la muestra se regresa de nuevo a la población donde se obtuvo.
Ejemplo:
lanzar al aire dos veces una moneda son eventos independientes por que el resultado del primer evento no afecta sobre las probabilidades efectivas de que ocurra cara o sello, en el segundo lanzamiento.
Dos o más eventos serán dependientes cuando la ocurrencia o no-ocurrencia de uno de ellos afecta la probabilidad de ocurrencia del otro (o otros). Cuando tenemos este caso, empleamos entonces, el concepto de probabilidad condicional para denominar la probabilidad del evento relacionado. La expresión P(A|B) indica la probabilidad de ocurrencia del evento A sí el evento B ya ocurrió.
Se debe tener claro que A|B no es una fracción.
P(A|B) = P(A y B)/P(B) o P(B|A) = P(A y B)/P(A)
EJERCICIOS:
No hay comentarios.:
Publicar un comentario